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Abstract. For bicriterion quasiconvex optimization problems, we present a constructive procedure for 
an approximation of the efficient outcomes. Performing this procedure we can estimate the accuracy of 
the approximation. Conversely, if we prescribe an accuracy for the approximation, we can calculate 
the number of points which have to be computed by a certain scalarization method to remain under 
the given accuracy. Finally, we give a numerical example. 
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1. M o t i v a t i o n  and  Formula t ion  o f  the Problem 

Let two objective functions fk : ~n ___> ~, k = 1, 2, and a non-empty set Z C_ ~n be 
given. Then the vector optimization problem for the vector-valued objective 
function f "  ~n__> ~2 with f(x):= (fl(x), f2(x)) for x E ~n and the feasible set Z is 
the problem of finding all efficient points in Z. Recall that a feasible point v E Z is 
called efficient iff 

V f(x) <~f(v) ~ f(x) =f(v)  
x E Z  

where the inequality and the equality are defined componentwise. Let E denote 
the set of all efficient points in Z. 

In general, E is a set with infinitely many points and is too complicated to 
compute explicitly. Also an approximation of E seems to be too unwieldly for the 
decision maker since it might be n>>3. Thus, our aim is to formulate a 
constructive procedure to compute an approximation of the efficient outcomes 
f(E). In fact, by computing E m : =  (o  1, . . . , o m) by (17)-(19), we obtain 

sup inf [If(v) i -f(v )ll,z (1) 
v E E  i•{1 . . . . .  m} 

where A m ---> 0 as m---> ~ and C is constant only depending on fl ,  f2, and Z 
(compare Corollary 4.2). Moreover, for a prescribed accuracy e for the approxi- 
mation we can determine the number re(e)E ~ of points which are needed to 
achieve 

sup inf ]if(v) -f(v/)ll2 s (2) 
v E E  i ~ ( l  . . . . .  m(e)} 
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(compare Corollary 4.3). 
After computing a set Em with (1), (2) the approximation f(Em) of the efficient 

outcomes can be presented to the decision maker to select his solution(s) based on 
further informations. Thus, this enables us to formulate an interactive algorithm 
where the computer intensive part, namely the construction of Era, is carried out 
first. Finally, the actual interactive part, where the decision maker communicates 
with the computer, can be realized very quickly. 

To reach our goal we use the scalarization method (5). Many other authors also 
use this method (or a variant of it), see for example Aksoy [1], Bernau [4], 
Brosowski [5], Choo and Atkins [6], Helbig [10], Jahn [15], Jahn and Merkel [16], 
Shin et al. [19], and Steuer and Choo [21]). As in [7], [10], [15], [16], and [21], 
our purpose is to present a suitable sample of efficient points to the decision 
maker. In none of these papers, error estimates as given in (1) and (2) are given 
for these samples. 

In our opinion, the scalarization method (5) has some advantages in contrast to 
some variants of it, for example the method use in [1], [3], [6], [20], [21], 
henceforeward called 'constraint method'. Firstly, a point in the feasible set Z is 
also feasible for (5), but is in general not feasible for the constraint method. 
Secondly, by using the quantities ql > 0, q2 > 0 in (5) (which can be interpreted as 
weights for the objective functions fl, f2) we are more flexible than in the 
constraint method. In fact, when rewriting (5) as a program in ~n+l with a linear 
objective function and with the functions fl, f2 in the constraints, (5) is exactly 
the constraint method by putting q l - -1 ,  q2 =0,  pa = 0. Thus, only the first 
objective function is positively weighted. Thirdly, by using (5) we are able to 
establish the error estimates (1), (2) for our procedure. One crucial result for this 
is the construction of the Lipschitz constant in Theorem 2.4, which would be 
infinity for the constraint method. 

To attack our problem, we have to assume that 

(a) f(E) is connected, "] 
(b) a l : =  inf fl(x) and b2:= in f  fz(x) both exist and were attained, and 

xUzZ 

(c) f (Z)  + R 2 is closed. 

(3) 

Assumption (b) says that the objective functions are bounded from below on the 
feasible set. Moreover, together with (c), assumption (b) implies that the efficient 
point set is non-empty. Assumption (c) is fulfilled, if, for instance, f is continuous 
and Z is compact. 

Of course, the topological assumption (a) is hard to verify for a concrete 
problem. Classes of vector optimization problems satisfying (a) are discussed in 
Choo and Atkins [7], Luc [14], or Helbig [9]. In particular, Schaible ([18] 
Theorem 2) establishes the following result: 
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T H E O R E M  1.1. Let Z be convex, compact and let fa, f2 be strictly quasiconvex 
on Z. Then E and consequently f (E)  are connected. 

For our investigations, we need the following lemma. We omit the proof of it and 
also the proofs of the technical lemmata in Section 2. These results and their 
proofs are all geometrical motivated. In the working paper [11], they are drawn 
out in detail. 

L E M M A  1.2. (a) The numbers 

a 2 :=  inf L(x) and b a :=  inf fl(x) 
x C P  1 x E P  2 

were attained, where Pk := {V ~ Z I fk(V ) = minxe z fk(X)} for k = 1, 2. 
In the sequel, let a := (a 1, az) and b := (ba, b2), where al, b 2 are as required in 

assumption (3). 
(b) For each c = ( c l , c z )  EN2 with c 1E[a a,bl]  and c 2E[b 2,a2] and each 

q = (ql ,  a2) with qa > O, q2 > O, there exists unique (p, t) E [0, 1] x N such that 

c + tq =pa + ( 1 - p ) b  (4) 

provided that a ~ b. In case of  a = b, then t = 0 solves (4) uniquely for any 
p [o, 11. [] 

In the sequel, let co(a, b) denote the convex hull of the points a and b. 

2. On a Sealarization Method 

To solve the vector optimization problem, we introduce a scalarization method, 
which is due to Gemibicki [8] and, in its most general setting, to Pascoletti and 
Serafini [17]: 

Let  q = (qa, q2) with qa > 0 and qz > 0 be fixed. For each p E co(a, b) consider 
the scalar optimization problem 

OP(p):  min max~ f l ( x ) - p l  f2(x-)-P2} 
x~Z I ql ' q2 J " 

(5) 

Let M(p)  denote the minimal value and P(p)  the optimal set of the problem 
OP(p) ,  p E co(a, b). The relationships between solutions of OP(p)  and efficient 
points are given in ([17] Theorem 1.1) and in ([131 Theorem 1.1). In particular, 
we have 

L E M M A  2.1. I f p  E co(a, b) such thatf(P(p)) is a singleton, then P(p)  C_ E. [] 

Under  our assumptions (3)(b), (c), each scalar problem MP(p)  has a solution, 
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and there are estimates for the minimal value M(p) and for the images of the 
optimal points. 

L E M M A  2.2. Let assumptions (3)(b) and (c) be fulfilled. Then for each p E 
co(a, b) 

mini. b, - Pl a2 -- P2 (]" (a) M(p) I q l ' -~2 "J ' 

(b) P(p) # r ; 

(b~) for each v ~ P(p) . [] (c) f(v) <- a2 

In the next lemma, we establish that there are at most two efficient points in 
P(p), p E co(a,b), and that they can be computed by a further minimization 
process. 

L E M M A  2.3. Let assumptions (3)(b) and (c) be fulfilled and let p @ co(a, b). 
Define v and u in Z as follows: 

v E arg min{fz(X) E ~ l x  E P(p), fl(x) =Pl + M(p)ql} 1 
u ~ arg min{f~(x) E R Ix ~ P(p), fz(X) =P2 + M(p)q2}. (6) 

Then v or u or both are efficient and for each w E P(p) f) E it follows f(w) =f(v)  
orf(w) = f(u). [] 

Next we establish the Lipschitz continuity of the minimal value mapping 

M:co(a,b)--+R,  p ~ , M ( p ) ,  

which is defined for each p ~ co(a, b) by Lemma 2.2(b). 

T H E O R E M  2.4. The mapping M is Lipschitz continuous with the global Lipschitz 
constant 

max{l+ ) 
Especially, we have IM(p) - M(p')[ <~ maxk=a, 2 IPk -- P'klqk ~ gl[P -p' l l2 for 
each p, p' in co(a, b). [] 

This theorem in its most general setting can be found in Helbig ([12], Theorem 
3.7). 
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3. Parametric Representation of the Efficient Point Set 

In this section we show that the set co(a, b) is a parametric representation of the 
efficient outcomes, where a and b are defined as in Lemma 1.2. Especially, 
co(a, b) is homeomorphic to f (E) .  Our approach extends other parametric 
representations of E, such as Benson ([3] Theorem 2.1) for convex problems or 
Choo and Atkins ([7] Lemma 4.1) for linear fractional problems. Schaible ([18] 
Lemma 2) generalizes the mentioned results in [3] and [7] to the case of fl being 
continuous and f2 being strictly quasiconvex. But in this case there is no 
homeomorphism between the parameter set and f (E) .  Related results can be 
found in Soland ([20] Theorem 1), Bacopoulos and Singer ([2] Theorem 2.1) and 
Aksoy ([1] Theorem 3). 

T H E O R E M  3.1. Let assumptions (3 )(b) and (c) be fulfilled. For each v E E there 
exists an unique p E co(a, b) such that 

f(v) = p + M(p)q  . (7) 

Especially, E C_ U pEco(a,b ) P(p).  
Proof. By assumption, E # It. Let v E E. Then fl(v) E [at, bl] and fz(V) E 

[b2, a2]. In fact, otherwise, it follows that f(x) = a <f(v)  (resp. f(x) = b <-f(v)) for 
some x E Z with f(x) r  This would contradict the efficiency of v. 

By Lemma 1.2(b), there exist unique numbers t o E R and p E co(a, b) such that 

f (v)  - toq =p  . (8) 

We claim that 

v E e ( p )  and M ( p ) = t  o . (9) 

By (8), it follows M(p)<~ t o. Let u E P(p) ,  which exists by Lemma 2.2(b). This 
implies that 

f(u) <-p + M(p)q  <~p + toq = f ( v ) .  

By efficiency of v, this implies f(u) = f(v) and consequently also (9). 
Since v is arbitrary, (9) implies the assertion. [] 

For the converse of the inclusion in the last theorem we need assumption (3)(a). 

T H E O R E M  3.2. Let assumptions (3 )(b) and (c) be fulfilled. Then the set f (E )  is 
connected, i.e. also (3 )(a) holds, iff  the mapping 

A:  co(a,b)--~2 I(e) , p~--~f(P(p)) 



40 S I E G F R I E D  H E L B I G  

is a point-to-point-mapping with A ( p ) = p  + M(p)q, bijective, and continuous. 
Especially, E = t-JpEco(a,b ) P(p) .  

Proof. " i f : "  By the Lipschitz continuity of the mapping M (compare Theorem 
2.4) and by Theorem 3.1, it suffices to show that A is a point-to-point-mapping, 
has the desired presentation, and is injective. To establish the former assertion, 
by Lemma 2.1, we have to Show thatf(P(p)) is a singleton for each p ~ co(a, b). 
Assume to the contrary that f(P(p)) contains more than one point for some 
p E co(a, b). 

Let v, u in P(p) be constructed by (6) of Lemma 2.3. Without loss of generality 
let v ~ E and f2(v) <f2(u). Moreover, let 6 E N be such that 

fz(V) < 6 <fz(U) =P2 + M(p)q2. (10) 

Define a partition of f (E) by 

E~:={yef(E)lY2<~6} and E2:={y~f(E)ly2>6}. 

Obviously, we have E 1 CI E 2 = ~t and f(E) = E 1 U E 2. By Lemma 1.2(a), the points 
a and b are in f(Z).  Moreover, since b2<--f2(v)<6 and, by Lemma 2.2(c), 
6 <f2(u)<~a2, we have b E E  1 and aEE2,  i.e. E I r  and E2 ~ t .  

To establish the closedness of E 1 in f(E),  we claim that 

Y2~<f2(v) for each y E E 1 .  (11) 

In fact, if 6 >f2(to) >f2(v) for some f(w) E El, then, by efficiency of w, fl(w) < 
)el(/3) = P x  -t- M(p)q~. Since also f2(w) < 6 ~<P2 + M(p)q2 (compare (10)), we must 
have 

L(w) -Pk 
max < M(p) 
k = 1 , 2  qk 

in contradiction to the minimality of M(p). Hence, (11) holds. 
Now let (f(wk))C_ E 1 be a sequence converging to some f (w)El (E) .  By (11), 

f2(w) = limk__,~ f2(w k) <~f2(v) < 6, i.e., f(w) E E 1 . Therefore, E 1 is closed. 
To establish the closedness of E 2 in f(E),  we claim that 

Y2~>fz(u) for each y E E  z. 

Assume to the contrary that 

6 <f2(w) <fz(u) =P2 + M(p)q2 for some f(w) E E 2 . (13) 

If fl(w)>~Pl + M(p)ql,  then, by (13), (10) and (6), it follows f(v)<~f(w) and 
f(v) ~f (w)  in contradiction to w E E. Hence, fl(w) <P l  + M(p)ql. This together 
with (13) implies that 
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L(w) -p~ 
max < M(p) .  
k=l,2 qk 

Because of this contradiction (12) holds. The closedness of E2 is now proved by 
the same arguments as above. 

Thus, f (E)  would be not connected in contradiction to the assumption. Hence, 
f(P(p)) is a singleton and consequently P(p)C  E. 

By what we just proved, A(p)  =f(v) for each v E P(p). By construction (6) of 
Lemma 2.3, we obtain A(p)  =f(v) =p  + M(p)q. 

To show the injectivity of A, le tp,  p '  be in co(a, b) with A(p)  = A(p ' ) .  There 
exist w, w' in E such that 

p + M(p)q =f(w) = A(p)  = A(p ' )  =f(w')  = p' + M ( p ' ) q .  

Without loss of generality let M ( p ) ~  M(p') .  Then 

p - p '  = (M(p')  - M(p))q >i 6). (14) 

Since p, p '  are in co(a, b), we must have Pk ~<P~ and p~ ~<pj. for k, j in {1, 2} with 
k ~ j. Then (14) implies p = p'. 

" ~  :" By continuity of A and connectedness of co(a, b), f (E)  is connected. [] 

By Theorems 3.1 and 3.2, we obtain the following corollaries. 

COROLLARY 3.3. Let assumption (3) be fulfilled. Then for each v ~ E  there 
exists an unique p E co(a, b) such that 

f(v) = p + M(p )q .  (15) 

Conversely, for each p E co(a, b) there exists an unique f(v) E l (E)  such that (15) 
holds. [] 

COROLLARY 3.4. Let assumption (3) be fulfilled. Then f(E) is homeomorphic 
to co(a, b ). 

Proof. By Theorem 3.2, A is continuous and bijective. The mapping A -1 is 
also continuous since (8) may be rewritten to 

p(b - a) + tq = f(v) - a 

and the solution of this system depends continuously on the right hand side. [] 

4. Approximation of the Efficient Outcomes 

In this section, we construct a discrete subset E m of E satisfying (1), resp. (2). In 
particular, we obtain estimates of the distance between efficient points via 'their' 
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parameters and of the number of points needed for E m. Further results in this 
context (also for non-convex problems) can be found in Helbig ([13] Section 4). 
For the remaining part of the paper we assume that the vector q = (ql,  q2) with 
ql > 0, q2 > 0 is such that 

( q , b - a )  = 0 .  (16) 

In particular, this means that (q, p - p ' )  = 0  for each p, p '  in co(a, b). The 
estimates in (a) in the next results are more elegant but are coarser than those in 
(b). 

We should remark that the estimates below can also be drawn without 
assumption (16). In this case the arising constants are bigger than those in the 
results below (see [11] for details). 

T H E O R E M  4.1. Let assumptions (3) and (16) be fulfilled. For each p, p' in 
co(a, b) and each v E P(p), v' E P(p) the following estimates hold: 

(a) Ill(v) - f (u ' ) l l2  ~ ~/1 + g~llqllX lip - p ' l l ~ ,  

(b) [If(v)-f(o')ll2 ~<~] ]p -p 'H  2 + g2llqH~( max IPk--P']~2 
\ k = l , 2  qk / ' 

where L is the Lipschitz constant of Theorem 2.4. 
Proof. By Corollary 3.3, f(v) =p + M(p)q and f(v') =p'  + M(p')q. By (16), 

we obtain 

IIf(v)-f(v')ll = -  - p '  - lip + (M(p) - M(p'))ql]~ 
2 = tiP -P ' l l z  + (M(p) - M(p'))2llqtt~ 

+ 2(M(p) - M(p' ) ) (p  - p ' ,  q} 
2 

= lip -p ' ] ]  2 + (M(p) - M(p'))2llqll~. 

Now, estimating the last term with the constants of Theorem 2.4 it follows that 

IIf(v)-f(o')llZz < IIp-p' l[~ + zZllqll2( max tpl-p'il 
\ i = 1 , 2  qi 

2 
~< (1 + g211qll ~)IIP - p ' l l  2 �9 

Thus, the proof is finished. 

m )  2 

[] 

Because of this result it makes sense to discretize the parameter set co(a, b). 
Hence, let 

Pm : =  {pi ~ co(a, b)lj = 1 , . . .  , m} (17) 
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j - j + l  be a discretization of co(a, b) with m E N ,  pl  =a, p m  b, and p~ <-Pl for 
j = 1 , . . . ,  m - 1. Fur thermore,  let 

Am= max Ilpj+l-pJtl2, and 
j = l  . . . . .  m--1 

A, , ~ =  max [p~+l_p~l  for k =  1 , 2 .  (18) 
' j = l  . . . . .  m - 1  

For each j E { 1 , . . . ,  m} we choose vJ~  P(pJ) and define 

E m :-~- { v  1 . . . .  , v m } .  ( 1 9 )  

C O R O L L A R Y  4.2. Let assumptions (3) and (16) be fulfilled, let for m E N the 
set I'm, the numbers A m and Am, k k = 1, 2, and the set E m be defined as in (17), 
(18), and (19). Then for each v E E there exists v i E Em such that the following 
estimates hold: 

~, ,... ~< V 1 + z2llqll2 z ] 
(a) Ilf(v) -ftv)l[2 2 Am, 

(b) Ilf(v)-f(v)ll2<~�89 i~ -k)2'I (20) 

where L is the Lipschitz constant of  Theorem 2.4. 
Proof. Let  v E E .  By Theorem 3.2, f (P(p))= {f(v)} for p :=A-l ( f (v) ) .  Let  

j E { 1 , . . . ,  m - 1} be such that p E co(p j, pj+l). Then p = ppJ + (1 - p)pj+l for 

>- • let i = j. Otherwise let i = j + 1. In the former case, we some p E [0, 1]. If p ~ 2 

obtain 

1 
lip -p i l l2  = (1 - p)llp i-p'+ll[ 2 <<-~A m . 

In the latter case, it follows l i p - p i l l 2  = p l l p  '-1 -Pill2-~am. Analogously, we 
show that [Pk--P],[ ~< A,,,k/2 for k = 1, 2. 

Consequently,  using the estimates of Theorem 4.1, the assertions are proven. [] 

Next we want to remain under a certain accuracy e > 0 in the last results or to 
approximate f (E)  with a prescribed e > 0. Note that the for equidistant points in 
P,n, i.e.,  

Pm := {a + ~ 1 1 ( ~  - :~) j = l,  . . . ,m}  , 

it follows that 

(21) 

Am [Ib-allz 1 m - 1  HP~-PJ+~H2 

Am ~ Ibg - akl j j+l 
- - I P ~ - P k  lJ ' m - - I  

\ 

for each j = l , . . . , m - 1  and k = l , 2 .  

(22) 
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By Corollary 4.2 and (22), it follows immediately 

C O R O L L A R Y  4.3. Let assumption (3) be fulfilled. For given e > 0 let 

(a) m(e) >! ~/(1 + Lllql122e lib- all2 + 1 ,  

f[[b-a[[~+L2[[q[[~(max[bg-ad) 2 
kk=l,2 qk " 

(b) m(e)>i 2e + 1, 

(23) 

where L b the Lipschitz constant of Theorem 2.4. Define the set P,,,(~) of 
equidistant points, the numbers Z~m(e) and Am(e),k , k = 1, 2, and the se t  Em(e) as in 
(21), (22) and (19). Then 

v 3 II f (v)  -f(v')ll  e.  [] 
v ~ E  iE{1,...,m(e)} 

Summarizing Corollaries 4.2 and 4.3, our desired results (1) and (2) are achieved. 
In fact, the accuracy of the approximation can be estimated by one of the 
constants in (20) of Corollary 4.2 by taking Em as defined in (19). On the other 
hand, if the accuracy e > 0 is prescribed, then let m(e) E N be as in Corollary 4.3 
and let Em(~) as in (19). Then, the set f(Em(~) ) approximates the efficient 
outcomes f(E) with accuracy e if Pm(O is as in (21). 

Since the approximation of the efficient outcomes is constructive, we formulate 
the following procedure for performing this construction. Assume that (3) holds. 

A L G O R I T H M  TO CONSTRUCT AN APPROXIMATION OF THE EFFI- 
CIENT OUTCOMES WITH PRESCRIBED ACCURACY 
(Step O) Choose an accuracy e > 0. 
(Step 1 ) Determine the numbers al ,  a2, bl,  b2 and let a = (as, a2), b = (bl, b2). 

If a = b then goto (Step 3). 
Put c := (b 1 - a 1, b 2 - a2) and choose numbers ql > 0, q2 > 0 such that 
(16) holds. 

(Step 2) Calculate the number m(e)E N by (23). 
Let Pm(~): = {a + ( j -  1 ) / ' ( m ( e ) -  1) clj = 1 , . . . , r e ( e ) } .  
For each j ~ {1 . . . .  , m(e)} compute a solution v j E Z of OP(pJ). 
Put Em(~) := {v 1, . . . ,  v m(~l}. 
Goto (Step 4). 

(Step 3) Let v E Z be a solution of OP(a). 
Put E 1 := {v} and m(e):= 1. 

(Step 4) The set Em(~) is the desired subset of E with property (2). STOP. 

R E M A R K :  In practice, to implement the above algorithm one would rewrite the 
scalar problem OP(p i) as a program in ~n+X 
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OP' (p  j) : min t 

subject to x E Z, t E ~ ,  

fk(x)- tqk <_ k = l , 2 .  

Thus,  if we consider a convex vector optimization problem, i.e., Z is a convex set 
and fk, k = 1, 2, are convex functions, then OP(p  j) is a convex program with 
linear objective function. 

Based on an approximation o f f ( E ) ,  an interactive algorithm can be formulated to 
help the decision maker to select his solution(s). 

I N T E R A C T I V E  A L G O R I T H M  
(Step O) Calculate the points a and b, the number m(e), and the sets 

Pm(~), E,,(~) by the above algorithm. 
(Step 1 ) The decision maker chooses a reference point p E co(a, b ). 

Calculate i E { 1 , . . . ,  m(e)} such that 

IIp-p' l l2 ~ l ip-p i l l2  foreach j= 1,. . .  ,re(e). (24) 

The point v i is presented to the decision maker. 
If he does not accept this solution, repeat (Step 2), otherwise STOP. 

R E M A R K .  The choice of the number i E { 1 , . . .  ,m(e)} to guarantee the 
maximal error given in (20) can be made as shown in (24). In fact (excluding the 
trivial cases a = b o r  p = p i  for some i E { 1 , . .  . ,m(e)}) ,  since p~--<.pj+11 for 

j = 1 . . . . .  re(e) -- 1, (20) can be realized by first calculating j E { 1 , . . . ,  re(e) - 1} 
such that 

p [ < p l < p J l  +' 

and then putting i = j  or i = j  + 1 in dependence whether liP -pJ l l2  < [Ip -p j+a l lz  
or not. 

5. Some Numerical Examples 

E X A M P L E  5.1. Let  n = 2 ,  f a (x )=x l ,  L ( x ) : x 2 ,  q = ( 4 , 5 ) ,  and Z = { x E  
~2 ix 1 ~ 5, x 2 ~ 4, h(x) >i 0}, where 

h(x) := min{x~ + (x 2 - 3) 2 - 1, xl + x2 - 4, (Xl - 2) z 

+ (x 2 -  1) z -  1, x 1 +2x  z - 5 }  . 

Therefore ,  E = f ( E )  = {x E Z lh(x) = 0} is connected and f ( Z )  + ~2  = f ( E )  + ~+z 
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Fig. 1. The feasible set Z. 
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Fig. 2. The approximation for m=3.  

is closed.  Fur the r ,  we obta in  a = (0, 4),  b = (5, 0), and L = 0.25. Thus ,  when  
using equidis tant  p a r a m e t e r s  in co(a, b), the max imal  e r ro r  is 

m = 3  m =  11 m = 5 1  m = 101 m = 1001 

by  (a) of  (20) 3.021 0.604 0.121 0.06 0.006 

by  (b)  o f  (20) 2.562 0.512 0.102 0.05 0.005 

By  (a) or  (b) of  (23),  we could calculate a lower  bound  for  the n u m b e r  rn(e) to 
r e m a i n  unde r  a given accuracy e > 0 .  For  m = 3, m = 11, and rn = 51 we show the 

app rox ima t ions  E,n = f ( E m ) ,  of  E = f ( E )  (see Figures  1-4) .  
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Fig. 3. The approximation for m = 11. 
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Fig. 4. The approximation for m = 51. 
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